

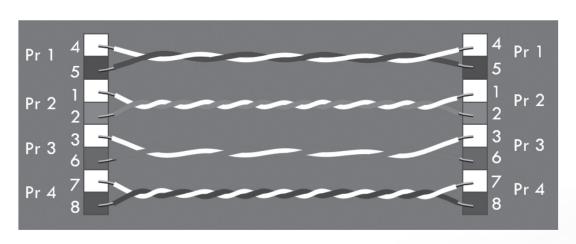
中華電信智慧建築辦公室顧問 劉時淼老師

NCC 3600-9「建築物屋內外電信設備設 置技術規範」第18.5.4節列出對絞型數據電 纜(以下稱網路線)設計供數據埠使用之測試 項目及標準,分鏈結測試及通道測試兩種。 鏈結測試是指施工廠商施作的實際線路長度 ,總長不得超過90米(不含跳接線)。通道測 試從線路接設備的接頭算起到終端插設備的 插頭為止,100米(含兩端跳接線各5米)。站 在負責的角度,驗收測試只做鏈結測試。因 為跳接線由使用者提供,非施工廠商提供, 當然不能要施工廠商班負責。

鏈結測試包括接腳連線、傳輸特性測試、 長度測試三大類。茲分別説明這些測試的意 義:

一、接腳連線(Wire Map)

路線在市面上有T568A及T568B兩種終端方 式,如下圖。


圖(一) T568A與T568B接線圖

T568B出現在電腦只用兩對線傳輸的時空 背景,CAT 5e時代。網路線有八心,若要接 電話則將直接使用4、5兩芯,裝RJ11電話 插頭,若要接電腦則把1、2、3、6如上圖 交接。因此,在同一個插座盒內,一條網路 線可以同時接電話及電腦。電話系統與電腦 系統的更換在宅內配線箱內用網路跳接線跳 接。但隨著CAT 6出現,同時使用8心傳輸 。T568B的交叉沒有必要,而且T568A比較

符合線路人員接線的直覺,因此在市場上普 遍了起來。現在市場上這兩種接腳同時存在 ,但必須分開使用,不能一端T568B,另一 端T568 A。

接腳圖測試有兩個目的: 1. 防止施工人 員把一條網路跳線做成一頭T568A另一 頭T568B。2. 防止8條線兩端接錯。下圖 為T568A接腳,凡是不同於下圖者,都錯。

圖(二) 正確的接腳圖

二、傳輸特性測試及測試值 的意義

傳輸測試是用來測試施工品質,分10個子項:

1.衰減量(Insertion Loss, IL)

所謂插入損失者1,是指線條本身以外, 因接點增加的信號損失。如下圖,因線路中 間多兩個接頭,造成插入損失,傳輸前與傳 輸後信號大小相差明顯。會引起插入損失的 原因有: 1. 兩條線接觸介面信號反射, 2. 介質損失(漏電),3. 銅接續介面功率發散。 信號損失過量,接收的電腦無法識別是"1 ″或"0″,變成比次錯誤。

圖(三) 插入損失示意圖

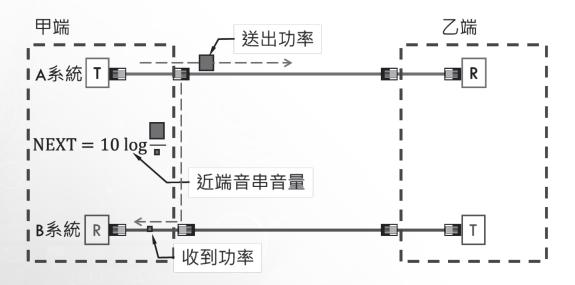
¹ 插入損失(Insertion Loss)與衰減(Attenuation)不同。前者線條中有接點,後者線條中無接點。NCC 3600-9 條用Insertion Loss 或 Attenuation,語焉不詳。

各種網路線在不同頻率的衰減量如下表:

表1. 不同頻率時,各種網路線的衰減量

項目	衰減量(dB)		
電纜種類	Cat 5e	Cat 6	Cat 6A
100MHz	21	18.6	18
250MHz		31.1	29.5
500MHz			43.8

表中,Cat 5e在100MHz的頻率衰減21dB,表示信號從送端到收端衰減125倍。同樣的頻率Cat6為18.6dB,衰減72倍。顯然的,Cat6的傳輸能力優於Cat 5e。同樣的,250MHz時,Cat 6A優於Cat 6。


2.對與對近端串音量(p-p NEXT)、多 重近端串音量(PSNEXT)、對與對遠

端衰減串音比(Far-end, p-p ACRF)、多重遠端衰減串音比(Far-end, PSACRF)

以上四個項目之前兩項為近端串音,後兩項為遠端串音。串音大都是施工後所引起, 原因有接頭施作不良、線條扭絞被破壞、或 接地不良等。茲遂項討論之:

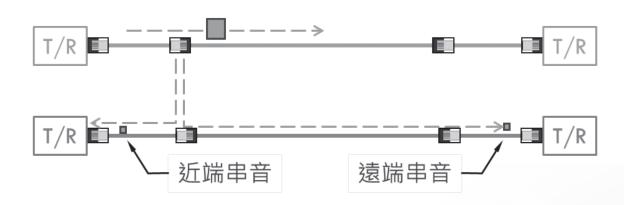
L近端串音量

下圖,單工通信系統²甲乙兩端,A系統的發信機在甲端與收信機在乙端,B系統的的收信機在甲端,各用一對線連接。甲端發信機發出橘色信號,在綠色收信機卻收到一小部份的橘色信號。把末經衰減的發出功率與收到的功率拿來相比,取其對數值再乘以10,就是串音量,單位也是dB³。因為就發生在發信機附近,所以叫"近端串音(Near End Cross Talk, NEXT)"。而且是發生在線對與線對間,即p-p。加上NEXT,故p-p NEXT。

圖(四) 對與對近端串音

² 單工通信,送信時不能收信,收信時不能接收。

³ https://www.youtube.com/watch?v= WyacVO1yWY&t=49s



從線路品質的角度,串音越小越好!然而 業界對串音量定義的看法不太一樣,有時會 倒者看。但只要定義清楚,倒著看或正著看 都不是問題。圖(四)中的串音量比值把送出 功率當分子,收到的功率當分母,依數學的 定義,串音量越大越好!因此,"串音"與 "串音量"不同。

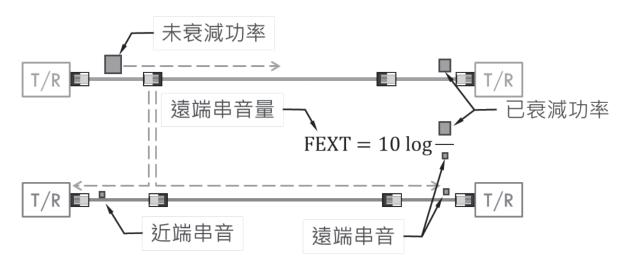
表2. 對與對近端串音量(dB)

網路線種類	Cat 5e	Cat 6	Cat 6A
100MHz	32.3	41.8	41.8
250MHz		35.3	35.3
500MHz			26.7

近端串音也發生在雙工通信系統,如下圖。

圖(五)雙工系統串音示意圖

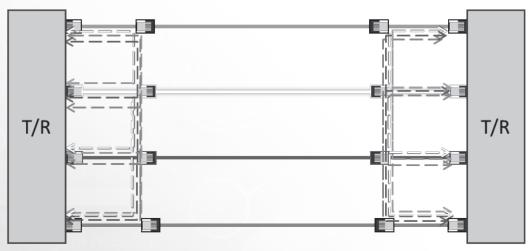
||.遠端串音量


雙工通信4系統中,同一對線兩端接上收 發信機,如圖(五)甲乙兩端同時 有T(Transmitter)和R(Receiver)。甲端橘色系 統發出的信號被乙端的綠色系統的收信機收 到,從甲端的角度看來,即為遠音串音。但 在圖(四)的單工系統不會發生遠端串音,因 為B系統的發信機不可能收到A系統送來的 信號。

在「對與對遠端衰減串音比」測試項目中

多了一詞"衰減",有其用意。把發信機送 出來的信號直接與遠端串音的信號相比,從 收信端的角度看是無意義的!因為收信機收 到的信號是經過線路衰減,測試時必須把衰 減的條件考慮在內才有意義。故,此測試項 目中多了"衰減"一詞。近端串音沒有此問 題,因為近端串音發生在發信機送出信號時 ,末經線路衰減就被拿來與發信機鄰近的另 一系統之收信機收到的信號相比。

⁴ 雙工通信:送信與收信同時進行。


圖(六) 對與對遠端衰減串音

但是,在NCC 3600-9第18.5.4.1測試項目 之第(2)項把近端串音寫成「對與對近端串 音衰減量(Pair-to-Pair Near End Crosstalk, 簡稱p-p NEXT)」,中間也有"衰減"一詞 。顯然不符近端串音測試的定義。

III.多重近端串音量(PSNEXT)與多重遠端衰

減串音比(Far-end, PSACRF)

在實際的乙太網路通信裡,網路線由四對 線綑、貼在同一條電纜內,通信時彼此之間 互串,是為多重串音,發生在近端的就是多 重近端串音量,如下圖:

圖(七) 多重近端串音

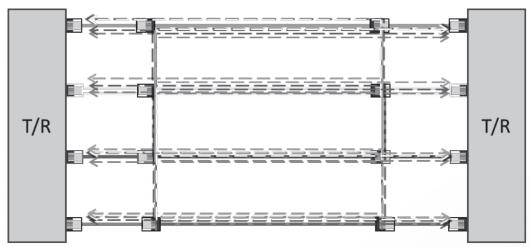

多重近端串音量如下表:

表3. 多重近端串音量(dB)

電纜種類	Cat 5e	Cat 6	Cat 6A
100MHz	29.3	39.3.8	39.3

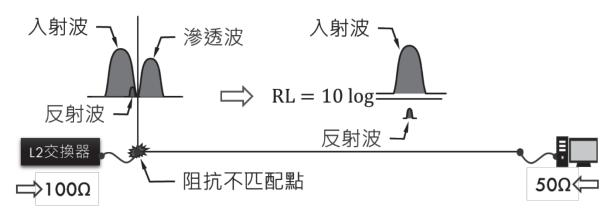
250MHz	32.7	32.7
500MHz		23.8

同樣的條件下,發生在收信端的即為多重遠 端衰減串音,如下圖:

圖(八) 多重遠端衰減串音

多重遠端串音衰減量如下表:

表4. 多重遠端串音衰減量(dB)


電纜種類	Cat 5e	Cat 6	Cat 6A
100MHz	18.6	24.2	24.2
250MHz		16.2	16.2
500MHz			10.2

3.回流損失(Return Loss, RL)

線路講電阻,電路講阻抗。在電路裡,談 阻抗匹配。無論從送端或收端看過去,阻抗 必須相同。如果阻抗不匹配,信號就會產生 反射。下圖,從左往右看阻抗皆不同,一邊 50Ω ,另一邊 100Ω 。顯然的,阻抗不匹配 。這種情形通常發生在接頭或線條在施工時 被嚴重扭曲。

下圖中有一個阻抗不匹配點,交換器發出 的信號(入射波)來到這裡有一部份被反射回來(反射波),大部份通過的波稱為"滲透波"。 迴流損失的定義是把入射波當分子,反射波當 分母,比值取其對數再乘10。同樣的道理, 反射波越小越好,因此回流損失越大越好!

圖(九) 回流損失示意圖

回流損失用來判斷線路施工品的良寙。下表中CAT 6A回流損失在高頻500MHz的情況下,傳輸100米後,反射信號只有入射信號的1/239。同樣的條件,在250MHz時為1/1862 ! 高頻電磁波碰到障礙物很容易反射。

表5. 回流損失(dB)

電纜種	Cat 5e	Cat 6	Cat 6A
100MHz	29.3	39.3.8	39.3
250MHz		32.7	32.7
500MHz			23.8

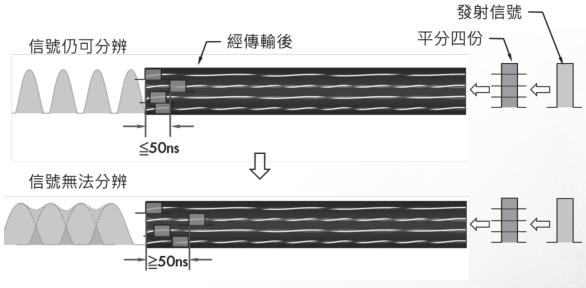
4.傳播延遲(Propagation Delay, PD)

在網路線裡,傳播延遲是指信號送出時,以開頭為準經過線路傳輸到收信端所需的時間,是線路距離與信號速度的比。在無線傳輸,信號速度相當於當光速。在實體線路,約光速的0.59到0.77。這是實體線路傳輸無法克服的障礙。大部份網路線的傳輸時間是570奈秒(Nano Second)5。如果規格允許,更長時間的延遲也可以接受。

下圖為傳播延遲的定義。設備到設備(通 道測試),NCC要求在10MHz時,延遲應在 555奈秒以內;不含跳接線時(鏈結測試), 498奈秒。各等級的網路線都相同。

^{5 1} 奈秒=0.000000001 秒

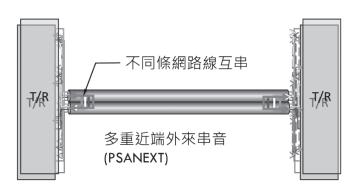
5.傳播延遲差異(Propagation Delay Skew, PDS)


網路線裡每一對心線都扭絞,而且絞距不 同,導致四對線的實際長度不同,如下圖:

圖(十一) 線對扭絞差異

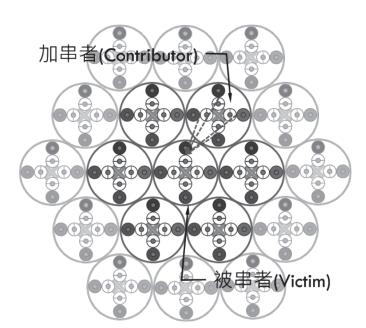
信號傳輸在不同長度線路裡傳輸,時間 當然也隨著不同,之間的時間差異就是傳播 延遲差異。以100米的長度,傳播時間差異

不超過50ns就可以接受。傳得最慢的那一對 ,就是這條線路的驗收門檻。


圖(十二)傳播延遲差異

在現場會造成延遲差異的原因只有一個, 就是線路過長。通常,125米在網路的運作 上不會產生什麼影響,但無法通過CENELEC 、ISO/IEF、TIA的標準。有時業主會堅持電 腦擺放的位置導致線路過長時,可以用其他 電纜的參數。如果通過,必須向業主表示該 電纜只在測試頻率是及格的,但長度不符合 一般的網路線標準,讓責任由業主負擔。

6.多重近端外來串音(PSANEXT)與多重遠端 衰減外來串音比(PSAACRF)


外來串音是指機房或電腦室內綑綁在一起 的網路線,每一條網路線都被其他的線路圍 繞,會彼此串音。

圖(十三) 外來串音示意圖

外來串音之所以被重視是因為加串者會影 響被串者的傳送能力,對於高頻寬之網路線 ,如Cat 6A,影響尤其嚴重。即使用有鋁被 屏蔽的網路線,萬一其中一條鋁被沒有良好 的接地,串音仍然會發生。被串音的網路線 稱為被串者(Victim),如圖(十四)紅色箭頭指 向的網路線,圍繞在旁邊的有路線都是加串 者(Contributor)。被串者與加串者的每一線 對都要對測,就要測試16次,被5條圍繞就 要測試80次,相當耗時。

圖(十四) 外來串音測試定義

三、結語

測試一定要做,讓我們體會網路線有生命 存在!

網路線測試可營造施工廠商、業主、使用 者三贏局面。

- 1.施工廠商確保施工品質,省去大量的查修 時間。完工後可安心的離開到他案現場, 不必因原先案場施工不良而加派人手回鍋 收拾殘局。
- 2.業主因線路品質得到保證,建物啟用後通 信良好,省去叫修的麻煩。
- 3.使用者將會長年使用此網路,將來必會出 現昇級的需求。好的線路施工品質放置在 屋內至少三十年不壞,大頻寬線路等在屋 裡,使用者只要兩端設備更換就可昇級。

測試方式: